Способы определения центра величины (ц.в.) и центра тяжести (ц.т.) судна. Поперечная остойчивость Поперечная остойчивость судна

Способы определения центра величины (ц.в.) и центра тяжести (ц.т.) судна

Для определения положения любой точки на судне, в том числе ц. т. и ц. в., пользуются системой координатных осей, неподвижно связанных с корпусом судна.

За вертикальную ось OZ принимается линия пересечения DП с плоскостью мидель - шпангоута, за продольную - горизонтальную ось OX - линия пересечения DП с основной плоскостью и за поперечную - горизонтальную ось OY - линия пересечения мидель - шпангоута с основной плоскостью. При этом за положительное направление осей принимается направление оси OX - внос, OY - к правому борту, OZ - вверх. Положение интересующих нас точек g и с может быть найдено по приближенным и точным зависимостям. Приближенные способы определения координаты ц. в. Координата ц. в. по ширине судна ввиду симметрии судна относительно DП всегда должна быть в плоскости диаметрали, т.е. у с =0.

Если этого равенства нет, то судно будет накрененным.

Координата точки с по длине судна х с находится всегда близко к середине судна, если нет дифферента на нос или корму, и меняет свое положение от мидель - шпангоута в малых пределах. Обычно х с меняется от +0,02L до -0,035L, где L - длина судна.

Координата ц. в. по высоте судна может меняться в следующих пределах: для судов с прямоугольным поперечным сечением z с =0,5Т, где Т - осадка судна; для судов с треугольным поперечным сечением z с будет равна? Т от основной плоскости, т.е. z с =0,66Т, таким образом эта координата зависит от формы поперечного сечения, а следовательно и от соответствующих коэффициентов полноты.

Определение координаты центра величины (ц.в.) и центра тяжести (ц. т.) Центр тяжести (g) судна, находящегося без наклонения, т.е. плавающего в равновесном положении, всегда должен находиться на одной вертикали с центром величины (с). Это достигается соответствующим расположением грузов на судне, и в этом случае у с =0.

Положение точки g по высоте, т.е. ее аппликата z g , зависит от расположения грузов на судне относительно его высоты и может быть выражена в долях высоты борта судна Н зависимостью

где к - опытный коэффициент, значение которого рекомендовано для порожних грузовых судов 0,35?0,5, для буксирных винтовых 0,60?0,70.

Для груженых грузовых судов, а также для пассажирских судов с высокими надпалубными надстройками значение z g может быть и более Н, т.е. к>1,0 .

Для точного определения значений координат центра тяжести - z g и x g судно разбивают на весовые статьи, определяют расстояния центров тяжести этих весовых статей от основной плоскости и плоскости мидель - шпангоута.

После того как все весовые нагрузки определены, найдены плечи их центра тяжести и вычислены моменты сил, координата центра тяжести по длине судна x g определится по формуле

где УМ н - сумма моментов всех сил весовых статей в носовой части судна относительно плоскости мидель - шпангоута;

УМ к - сумма моментов всех сил весовых статей в кормовой части судна относительно плоскости мидель - шпангоута.

Знак (+) укажет, что абсцисса центра тяжести расположена в носовой части судна, а знак (-), что она расположена в кормовой части судна, так как здесь ось х имеет отрицательное значение.

Координата центра тяжести по высоте z g определится по формуле

где УМ - сумма моментов всех сил относительно основной плоскости.

Правило трапеций, способы определения объемного водоизмещения судна и строевые

Объемное водоизмещение можно определить различными способами. Рассмотрим наиболее простой из них, обеспечивающий достаточную для практики степень точности, способ, основанный на использовании правила трапеций.

Первоначально применим правило трапеций для определения площадей фигур, ограниченных криволинейными линиями.

Разделим криволинейную фигуру (рисунок 7) на n равных частей. Длина каждой такой части будет, а площадь щ i каждой части можно определить как площади трапеций, стороны которых ординаты у i , а высоты Дl.


Рисунок 7 - Схема к расчету площади методом трапеций

Следовательно, S=щ 1 +щ 2 +…щ n-1 +щ n или

Подставляя в формулу значения для щ в виде площадей отдельных трапеций, получим

Это выражение называется формулой правила трапеций, в которой y 0 +y 1 +y 2 +y 3 +….+y n-1 +y n - сумма ординат, обозначается? 0 ;

Называется поправкой.

Вся величина в квадратных скобках - исправленная сумма и обозначается? испр., тогда выражение площади криволинейной фигуры может быть записано сокращенно в следующем виде

Все вычисления удобнее всего вести в табличной форме (таблица 1).

При вычислении объемного водоизмещения судна необходимо вычислить объем его подводной части, ограниченной поверхностью судна и плоскостью действующей ватерлинии.

Зная размеры судна и его очертания при вычислении объемного водоизмещения, по правилу трапеций исходят из того, что объемное водоизмещение V заменяется суммой объемов V 1 +V 2 +V 3 +….+V n-1 +V n , на которые разбивается подводная часть судна равностоящими одна от другой плоскостями параллельным плоскости мидель - шпангоута, или плоскости действующей ватерлинии.

Таблица 1 - Вычисление площади методом трапеций

Рассмотрим случай, когда судно, имея длину по ватерлинии L, осадку Т, рассечено на n отсеков плоскостями, параллельными плоскости мидель - шпангоута, как это указано на рисунке 8 с расстоянием между отсеками.


Рисунок 8 - Сечение судна плоскостями параллельными плоскости мидельшпангоута

Обозначив объемы отсеков судна между нулевым и первым сечением через V 1 , между первым и вторым через V 2 и т.д., запишем выражение для объема подводной части судна

V=V 1 +V 2 +V 3 +…+V n-1 +V n .(30)

Объемы выделенных отсеков судна можно определить как произведение полусуммы площадей шпангоутов на расстояние между ними ДL, после чего уравнение примет вид

или по аналогии с предыдущим будем иметь

где F 0 +F 1 +….+F n - сумма площадей шпангоутов;

Поправка;

выражение в квадратных скобках - исправленная сумма.

Для определения площадей шпангоутов F i (рисунок 9) в силу симметрии судна относительно DП определяют лишь половину площади шпангоута, а затем результат удваивают. При этом осадку Т делят на m равных частей и через точки деления проводят ординаты у 0 , у 1 …., у m ограниченные этими орднатами площади будут f 1 , f 2 , ….,f m . Расстояния между ордигнатами


Рисунок 9 - Схема к расчету площади шпангоута

По аналогии с предыдущим уравнение для определения площади шпангоута F i будет иметь вид

где - двойная исправленная сумма, получаемая путем первоначального суммирования ординат по шпангоутам, а затем шпангоутов по длине судна.

Объемное водоизмещение можно получить, рассекая судно равноотстоящими плоскостями, параллельными основной плоскости, а затем суммировать отсеки, образованные этими плоскостями (рисунок 10).

В этом случае осадку Т делят на m равных частей, в результате чего получают ряд площадей ватерлиний S, отстоящих друг от друга на расстоянии.


Рисунок 10 - Сечение судна плоскостями параллельными основной плоскости

Аналогично предыдущему выражение для определения объемного водоизмещения судна будет иметь вид

Площадь каждой из ватерлиний S 0 , S 1 , ….S m определится по зависимости

где - двойная исправленная сумма, получаемая путем первоначального суммирования ординат по ватерлиниям, а затем ватерлиний по осадке судна.

Нетрудно видеть, что результат определения объемного водоизмещения в двух случаях будет одинаков.

Вычисления объемного водоизмещения судна всегда ведутся в табличной форме (таблица 2).

В эту таблицу с теоретического чертежа судна заносят значения ординат у для каждой ватерлинии по каждому шпангоуту на один борт. Суммируют ординаты по горизонтали и по вертикали, для каждой суммы находят поправки как суммы крайних ординат, находят исправленные суммы? испр. В горизонтальных строках вычисляют площади каждого шпангоута, умножая значение? испр на ДТ (расстояние между ватерлиниями), а в вертикальных столбцах вычисляют площади каждой ватерлинии, умножая соответствующие значения? испр на ДL (расстояние между расчетными шпангоутами).

В правом нижнем углу таблицы получается исправленная сумма сумм колонки и одновременно исправленная сумма сумм строки УУ. Эта величина должна быть одинаковой как по вертикали, так и по горизонтали, что является своеобразным контролем правильности вычисления объемного водоизмещения.

Таблица 2 - Вычисление площадей шпангоутов, ватерлиний и водоизмещения судна

№ расчетных шпангоутов

№ ватерлинии

Поправка

Исправленная сумма?у

Площадь шпангоута F=2ДT?y

Поправка

Исправленная сумма?у

Площадь ватерлинии

Вычислив значение двойной исправленной суммы?? , определяют величину объемного водоизмещения по формуле

Пользуясь данными значений площадей шпангоутов, полученными в таблице, обычно строят кривую изменения этих площадей по длине судна. Такая кривая называется строевой по шпангоутам. Для этого в каком-либо масштабе откладывают длину судна L, на которой наносится положение всех равноотстоящих расчетных шпангоутов от F 0 до F n . На восстановленных ординатах в соответствующем масштабе откладываются величины погруженной площади соответствующих шпангоутов F. Кривая, соединяющая концы этих ординат, называется строевой по шпангоутам (рисунок 11).


Рисунок 11 - Строевая по шпангоутам

Эта строевая обладает следующими свойствами:

1. Площадь фигуры, ограниченная линией L, крайними ординатами и строевой по шпангоутам, вычисленная по правилу трапеций, численно равна объемному водоизмещению судна;

2. Абсцисса ц.т. этой площади выражает абсциссу ц.в. судна, т. е. Х с

3. Коэффициент полноты площади строевой по шпангоутам есть ничто иное, как коэффициент продольной полноты объемного водоизмещения судна

4. Строевая по шпангоутам дает наглядное представление о характере распределения объемного водоизмещения по длине судна, что необходимо знать при расчетах прочности судна.

Аналогично строят кривую изменения площадей ватерлиний в зависимости от осадки судна (рисунок 12). Такая кривая называется строевой по ватерлиниям. Для этого в каком- либо масштабе откладывают осадку судна Т, на которой наносят положения всех равноотстоящих ватерлиний от S 0 до S m . В другом масштабе на каждой абсциссе, восстановленной от соответствующей ватерлинии, откладывают величину ее площади. Кривая, соединяющая концы этих абсцисс, называется строевой по ватерлиниям. Она обладает следующими свойствами:

1. Площадь фигуры, ограниченная линией Т, крайними абсциссами и строевой по ватерлиниям, вычисленная по правилу трапеций, численно равна объемному водоизмещению судна;

Рисунок 12 - Строевая по ватерлиниям

2. Ордината центра тяжести площади равна ординате центра величины судна Z с.

3. Коэффициент полноты площади строевой по ватерлиниям есть коэффициент вертикальной полноты водоизмещения судна

4. Кривая дает наглядное представление о характере распределения объемного водоизмещения по высоте судна, что важно знать для характеристики плавности обводов судна.

1. Остойчивость надводно - плавающего тела

2. Остойчивость надводно - плавающего тела

Надводно - плавающее тело под действием каких- либо внешних сил может наклонятся в ту или другую сторону. Способность тела возвращаться в первоначальное положение называется его остойчивостью.

Плавающее тело или судно имеет три характерные точки: центр тяжести g, центр величины с и метацентр m. Центр тяжести g сухогрузного судна не меняет своего положения при качке. Центр величины при наклонении судна перемещается в сторону наклонения, при этом линия действия архимедовой силы пересекает ось плавания «0 - 0» в точке, которая называется метацентром. Положение метацентра при наклонении судна не остается постоянным. Однако при углах, не превышающих и = 15 о, положение метацентра почти не меняется и его принимают неизменным. В этом случае центр величины с перемещается примерно по дуге окружности, описанной из точки m радиусом r и называется метацентрическим радиусом. Остойчивость судна зависит от относительного положения центров c,g,m.

Пусть мы имеем судно, получившее крен на угол и < 15 о (рисунок 13). Для надводно - плавающих тел Архимедова сила D всегда равна силе веса G. Эти две силы образуют пару сил, стремящуюся вернуть судно в первоначальное (нормальное) положение. Таким образом, рассматриваемый случай является случаем остойчивого положения судна.

Изобразим второй случай (рисунок 14), когда центр тяжести g будет находится на оси плавания выше центра величины с. В данном случае, образующийся момент при наклонении судна на угол и стремится вернуть судно в нормальное положение, т.е. и в этом случае мы имеем остойчивое положение судна.

Рисунок 13 - Остойчивость судна при положении центра тяжести ниже центра величины.

Рисунок 14 - Остойчивость судна при положении центра тяжести ниже метацентра, но выше центра величины

Однако нетрудно заметить, что при равных условиях остойчивость во втором случае меньше остойчивости в первом случае, так как плечо пары сил, а следовательно, и восстанавливающий момент в первом случае будет больше.

И, наконец, рассмотрим третий случай, когда центр тяжести будет расположен выше метацентра m (рисунок 15). Образующаяся пара сил стремится еще сильнее наклонить судно. В данном случае нет сил, способных вернуть судну его нормальное положение. Мы имеем случай не остойчивого положения судна. Рассмотрев три случая с судном, имевшим разное положение центра тяжести, мы можем сказать, что чем выше центр тяжести судна, тем меньше его остойчивость. Следовательно, для увеличения остойчивости тел всегда нужно стремиться понизить их центр тяжести.

Рисунок 15 - Остойчивость судна при положении центра тяжести выше метацентра

Различное влияние пары сил на остойчивость плавающих тел зависит от взаимного положения центра тяжести g и метацентра m. При расположении метацентра выше центра тяжести тело остойчиво и при расположении метацентра ниже центра тяжести - не остойчиво. Это также можно охарактеризовать соотношением r и а, где а- расстояние между центром тяжести и центром величины. Принято считать, что положительное значение величины а соответствует такому взаимному положению центров с и g, когда центр с лежит на оси плавания ниже центра g.

Таким образом

при r>a- судно остойчиво (1 и 2 случаи),

при r

Расстояние между центром тяжести и метацентром на оси плавания принято считать метацентрической высотой h. Между h,r и а существует следующая зависимость

Если мы теперь снова обратим свое внимание на рассмотренные выше случаи положения судна, мы заметим, что для первого и второго случаев h>0, а для третьего метацентрическая высота h< 0. Следовательно, знак при h характеризует остойчивость судна. Положительное значение метацентрической высоты характеризует остойчивое положение судна, а отрицательное значение метацентрической высоты - неостойчивое.

И, наконец, когда метацентр m совпадает с центром тяжести судна при его наклонении на угол и, т.е. когда h=0 или r= a, мы будем иметь случай неостойчивого положения судна, так как при этом линии действия архимедовой силы D и силы тяжести судна G совпадут и, следовательно, никакого восстанавливающего момента образоваться не может. Этот случай в теории плавания носит название безразличного состояния.

В процессе эксплуатации судов бывает необходимо переходить от прямолинейного движения к движению по кривой и наоборот. Это возможно при условии, если к судну будут приложены внешние силы, моменты которых заставят судно отклониться от первоначального направления движения.

Способность судна изменять направление движения и двигаться по криволинейной траектории называется поворотливостью.

Изменение курса судна может быть достигнуто двояким способом - или с помощью движительных устройств, или с помощью специальных рулевых устройств. Первый способ может быть применен лишь на самоходных судах при наличии двух движителей. С помощью движительных устройств судно меняет курс, если упоры от движителя Т неодинаковы по величине или, если они направлены в противоположные стороны (рисунок 16)


Рисунок 16 - Поворотливость судна

В этом случае создается момент от пары сил, численное значение которого можно определить по формуле:

где Т 1 и Т 2 - упоры левого и правого движителей;

l - расстояние между осями движителей.

Этот момент и заставляет судно менять свой курс.

В случае, если Т 1 =Т 2 , судно будет вращаться на месте не получая поступательного движения. Если Т 1 >Т 2 , судно, кроме вращения под действием момента, будет иметь и поступательное движение вперед, а если Т 1 <Т 2 судна, кроме вращения, будет иметь и поступательное движение назад.

Обычно для поворота судна используется рулевое устройство, которое представляет собой в самом общем случае вертикальную пластину (перо руля), находящуюся в потоке за кормою судна (рисунок 17). Перо руля может поворачиваться вокруг оси о. Пластина вместе с другими устройствами для ее крепления и поворота называется рулем.


Рисунок 17 - Силы, действующие на судно при повороте руля

Если руль отклонен от диаметрали на угол б, то при скорости хода судна V, согласно законам гидромеханики, на руль действует гидродинамическая сила давления, величина которой может быть определена по формуле Жосселя

где Р а - давление воды на перо руля;

F- площадь подводной части пера руля;

V- скорости хода судна;

б - угол перекладки пера руля (угол отклонения от диаметрали);

к б - опытный коэффициент, зависящий от угла б, он представляет собой давление на 1 м 2 площади пера руля при скорости хода судна 1 м/сек.

Значение к б определяется эмперической формулой

Значение к рекомендуется принимать для одновинтовых судов 400 н/м 3 , а для двухвинтовых 225 н/м 3 . При перекладке руля на угол б на судно, кроме силы сопротивления R, упора Т, которые взаимно уравновешиваются (при равномерном движении), еще действуют следующие силы:

1. Пара сил, образующая момент М. Численное значение этого момента определяется зависимостью

В этой формуле величина значительно меньше, в - длина пера руля, а l - длина судна, в силу чего значением пренебрегают. После подстановки в уравнение (48) значения Р а видно, что если судно двигается с постоянной скоростью, величина момента зависит от произведения cosб sinб. Максимума это произведение достигает при б= 36 о. Отсюда следует, что отклонять перо руля более чем на 35-36 о нет смысла, так как момент вращения судна при этом не возрастает.

2. , сносящая судно в противоположную сторону поворота руля. Для того, чтобы убедиться в этом, приложим в точке g силы Ра, направленные в противоположные стороны. Равновесие судна от этого не нарушится. Одна сила Ра, приложенная в точке g вместе с силой Ра, действующей на перо руля, образует пару сил. разложим на составляющие и.

Сила увеличивает сопротивление движению судна из-за тормозящего действия пера руля, находящегося под некоторым углом б к направлению движения. Сила вызывает боковой снос судна (дрейф), наличие которого обуславливает возникновение боковой силы сопротивления. является той силой, которая заставляет судно изменить свой первоначальный курс. Рассмотренная сложная схема взаимодействия возникающих сил в связи с перекладкой пера руля на угол б обуславливает и очень сложный путь движения судна. Принято рассматривать три периода движения судна.

Первый - маневренный, когда производится перекладка пера руля и когда под действием силы судно получает боковой снос.

Второй - эволюционный, который продолжается до тех пор, пока судно не начинает равномерно вращаться вокруг неподвижной оси.

Третий - установившийся, когда все силы, действующие на судно, и моменты их взаимно уравновешиваются и судно начинает двигаться по окружности.

Кривая, описываемая центром тяжести судна при его полном повороте, называется циркуляцией судна (рисунок 21), а ее диаметр - диаметром циркуляции. Время, в течение которого судно совершает полный оборот, называется периодом циркуляции. Чем меньше диаметр циркуляции, тем лучше поворотливость судна, следовательно, поворотливость является одним из важнейших качеств сплавных судов, которым приходится работать на лесосплавных рейдах в условиях акваторий, стесненных наплавными сооружениями.

Диаметр циркуляции может быть определен по формуле

где S - площадь пера руля, м 2 ;

l,T - длина и осадка судна, м;

ОВ - маневренный период, когда имеет место боковой снос, численно равный к;

ВС - эволюционный период.

ЛЕКЦИЯ №4

Общие положения остойчивости. Остойчивость при малых наклонениях. Метацентр, метацентрический радиус, метацентрическая высота. Метацентрические формулы остойчивости. Определение параметров посадки и остойчивости при перемещении грузов на судне. Влияние на остойчивость незакрепленных и жидких грузов.

Опыт кренования.

Остойчивостью называется способность судна, выведенного из положения нормального равновесия какими-либо внешними силами, возвращаться в свое первоначальное положение после прекращения действия этих сил. К внешним силам, способным вывести судно из положения нормального равновесия, относятся: ветер, волны, перемещение грузов и людей, а также центробежные силы и моменты, возникающие при поворотах судна. Судоводитель обязан знать особенности своего судна и правильно оценивать факторы, влияющие на его остойчивость.

Различают поперечную и продольную остойчивость. Поперечная остойчивость судна характеризуется взаимным расположением центра тяжести G и центра величины С. Рассмотрим поперечную остойчивость.

Если судно накренить на один борт на малый угол (5-10°) (рис.1), ЦВ переместится из точки С в точку . Соответственно сила поддержания, действующая перпендикулярно к поверхности, пересечет диаметральную плоскость (ДП) в точке М .

Точка пересечения ДП судна с продолжением направления силы поддержания при крене называется начальным метацентром М . Расстояние от точки приложения силы поддержания С до начального метацентра называется метацентрическим радиусом .

Рис.1 – С татические силы, действующие на судно при малых накренениях

Расстояние от начального метацентра М до центра тяжести G называется начальной метацентрической высотой .

Начальная метацентрическая высота характеризует остойчивость при малых наклонениях судна, измеряется в метрах и является критерием начальной остойчивости судна. Как правило, начальная метацентрическая высота мотолодок и катеров считается хорошей, если она больше 0,5 м, для некоторых судов она допустима меньше, но не менее 0,35 м.

Резким наклонением вызывается поперечная качка судна и секундомером замеряется период свободной качки, т. е время полного размаха от одного крайнего положения до другого и обратно. Поперечную метацентрическую высоту судна определяют по формуле:

, м

где В - ширина судна, м; Т - период качки, сек.

Для оценки полученных результатов служит кривая на рис. 2, построенная по данным удачно спроектированных катеров.

Ри.2 – З ависимость начальной метацентрической высоты от длины судна

Если начальная метацентрическая высота , определенная по вышеприведенной формуле, окажется ниже заштрихованной полосы, то означает, что судно будет иметь плавную качку, но недостаточную начальную остойчивость, и плавание на нем может быть опасным. Если метацентр расположен выше заштрихованной полосы, судно будет отличаться стремительной (резкой) качкой, но повышенной остойчивостью, и следовательно, такое судно более мореходно, но обитаемость на нем неудовлетворительна. Оптимальными будут значения, попадающие в зону заштрихованной полосы.

Крен судна на один из бортов измеряется углом между новым наклоненным положением диаметральной плоскости с вертикальной линией.

Накрененный борт будет вытеснять воды больше, чем противоположный, и ЦВ сместится в сторону крена. Тогда равнодействующие силы поддержания и веса будут неуравновешенными, образующими пару сил с плечом, равным

.

Повторное действие сил веса и поддержания измеряется восстанавливающим моментом:

.

где D - сила плавучести, равная силе веса судна; l - плечо остойчивости.

Эта формула называется метацентрической формулой остойчивости и справедлива только для малых углов крена, при которых метацентр можно считать постоянным. При больших углах крена метацентр не является постоянным, вследствие чего нарушается линейная зависимость между восстанавливающим моментом и углами крена.

Малый () и большой () метацентрические радиусы можно вычислить по формулам профессора А.П.Фан-дер-Флита:

;
.

Взаимным расположением груза на судне судоводитель всегда может найти наиболее выгодное значение метацентрической высоты, при которой судно будет достаточно остойчивым и меньше подвергаться качке.

Кренящим моментом называется произведение веса груза, перемещаемого поперек судна, на плечо, равное расстоянию перемещения. Если человек весом 75 кг, сидящий на банке, переместится поперек судна на 0,5 м, то кренящий момент будет равен 75*0,5 = 37,5 кг/м.

Для изменения момента, накреняющего судно па 10°, надо загрузить судно до полного водоизмещения совершенно симметрично относительно диаметральной плоскости. Загрузку судна следует проверить по осадкам, измеряемым с обоих бортов. Креномер устанавливается строго перпендикулярно ДП таким образом, чтобы он показал 0°.

После этого надо перемещать грузы (например, людей) на заранее размеченные расстояния до тех пор, пока креномер не покажет 10°. Опыт для проверки следует произвести так: накренить судно на один, а затем на другой борт. Зная крепящие моменты накреняющего судно на различные (до наибольшего возможного) углы, можно построить диаграмму статической остойчивости (рис. 3), что позволит оценить остойчивость судна.

Рис.3 – Диаграмма статической остойчивости

Остойчивость можно увеличивать за счет увеличения ширины судна, понижения ЦТ, устройства кормовых булей.

Если ЦТ судна расположен ниже ЦВ, то судно считается весьма остойчивым, так как сила поддержания при крене не изменяется по величине и направлению, но точка ее приложения смещается в сторону наклона судна (рис. 4, а). Поэтому при крене образуется пара сил с положительным восстанавливающим моментом, стремящимся вернуть судно в нормальное вертикальное положение па прямой киль. Легко убедиться, что h >0, при этом метацентрическая высота равна 0. Это типично для яхт с тяжелым килем и нетипично для более крупных судов с обычным устройством корпуса.

Если ЦТ расположен выше ЦВ, то возможны три случая остойчивости, которые судоводитель должен хорошо знать.

1-й случай остойчивости

Метацентрическая высота h >0. Если центр тяжести расположен выше центра величины, то при наклонном положении судна линия действия силы поддержания пересекает диаметральную плоскость выше центра тяжести (рис. 4, б).

Рис.4 – Случай остойчивого судна

В этом случае также образуется пара сил с положительным восстанавливающим моментом. Это типично для большинства судов обычной формы. Остойчивость в этом случае зависит от корпуса и положения центра тяжести по высоте. При крене кренящийся борт входит в воду и создает дополнительную плавучесть, стремящуюся выровнять судно. Однако при крене судна с жидкими и сыпучими грузами, способными перемещаться в сторону крена, центр тяжести также сместится в сторону крена. Если центр тяжести при крене переместится за отвесную линию, соединяющую центр величины с метацентром, то судно опрокинется.

2-ой случай неостойчивого судка при безразличном равновесии

Метацентрическая высота h = 0. Если ЦТ лежит выше ЦВ, то при крене линия действия силы поддержания проходит через ЦТ MG=0 (рис. 5).

Рис.5 – Случай неостойчивого судна при безразличном равновесии

В данном случае ЦВ всегда располагается на одной вертикали с ЦТ, поэтому восстанавливающаяся пара сил отсутствует. Без воздействия внешних сил судно не может вернуться в прямое положение. В данном случае особо опасно и совершенно недопустимо перевозить на судне жидкие и сыпучие грузы: при самой незначительной качке судно перевернется. Это свойственно шлюпкам с круглым шпангоутом.

3-й случай неостойчивого судна при неустойчивом равновесии

Метацентрическая высота h <0. ЦТ расположен выше ЦВ, а в наклонном положении судна линия действия силы поддержания пересекает след диаметральной плоскости ниже ЦТ (рис. 6). Сила тяжести и сила поддержания при малейшем крене образуют пару сил с отрицательным восстанавливающим моментом и судно опрокидывается.

Рис.6 – С лучай неостойчивого судна при неустойчивом равновесии

Разобранные случаи показывают, что судно остойчиво, если метацентр расположен выше ЦТ судна. Чем ниже опускается ЦТ, тем судно более остойчиво. Практически это достигается расположением грузов не на палубе, а в нижних помещениях и трюмах.

Вследствие воздействия на судно внешних сил, а также в результате недостаточно прочного закрепления груза, возможно его перемещение на судне. Рассмотрим влияние данного фактора на изменение параметров посадки судна и его остойчивость.

Вертикальное перемещение груза.

Рис.1 – Влияние вертикального перемещения груза на изменение метацентрической высоты

Определим изменение посадки и остойчивости судна, вызванное перемещением малого груза в вертикальном направлении (рис.1) из точки в точку. Поскольку масса груза не меняется, то и водоизмещение судна остается неизменным. Следовательно, соблюдается первое условие равновесия:
. Из теоретической механики известно, что при перемещении одного из тел ЦТ всей системы перемещается в том же направлении. Следовательно, ЦТ судна переместится в точку , а сама вертикаль пройдет, как и прежде, через центр величины .

Будет соблюдено второе условие равновесия:
.

Так как в нашем случае оба условия равновесия соблюдены, то можно сделать вывод: при вертикальном перемещении груза судно не изменяет своего положения равновесия.

Рассмотрим изменение начальной поперечной остойчивости. Так как формы погруженного в воду объема корпуса судна и площади ватерлинии не изменились, то положение центра величины и поперечного метацентра при перемещении груза по вертикали остается неизменным. Перемещается только ЦТ судна, что повлечет уменьшение метацентрической высоты
, а также
, откуда
, где - вес перемещаемого груза, кН ; - расстояние, на которое переместился ЦТ груза в вертикальном направлении, м .

В теории поперечной остойчивости рассматриваются наклонения судна, происходящие в плоскости миделя, причем внешний момент, называемый кренящим моментом, также действует в плоскости миделя.

Не ограничиваясь пока малыми наклонениями судна (они будут рассмотрены как частный случай в разделе «Начальная остойчивость»), рассмотрим общий случай накренения судна от действия постоянного во времени внешнего кренящего момента. На практике такой кренящий момент может возникать, например, от действия постоянного по силе ветра, направление которого совпадает с поперечной плоскостью судна – плоскостью миделя. При воздействием этого кренящего момента судно имеет постоянный крен на противоположный борт, величина которого определяется силой ветра и восстанавливающим моментом со стороны судна.

В литературе по теории судна принято совмещать на рисунке сразу два положения судна – прямое и с креном. Накрененному положению соответствует новое положение ватерлинии относительно судна, которому соответствует постоянный погруженный объем, однако, форма подводной части накрененного судна уже не обладает симметрией: правый борт погружен больше левого (Рис.1).

Все ватерлинии, соответствующие одному значению водоизмещения судна (при постоянном весе судна) принято называть равнообъемными .

Точное изображение на рисунке всех равнообъемных ватерлиний сопряжено с большими сложностями расчетного характера. В теории судна существует несколько методик для графического изображения равнообъемных ватерлиний. При очень малых углах крена (при бесконечно малых равнообъемных наклонениях) можно воспользоваться следствием из теоремы Л. Эйлера, согласно которому две равнообъемные ватерлинии, отличающиеся на бесконечно малый угол крена, пересекаются по прямой, проходящей через их общий центр тяжести площади (при конечных наклонениях это утверждение теряет силу, поскольку каждая ватерлиния имеет свой центр тяжести площади).

Схема образования восстанавливающего момента

Если отвлечься от реального распределения сил веса судна и гидростатического давления, заменив их действие сосредоточенными равнодействующими, то приходим к схеме (Рис.1). В центре тяжести судна приложена сила веса, направленная во всех случаях перпендикулярно к ватерлинии. Параллельно ей действует сила плавучести, приложенная в центре подводного объема судна – в так называемом центре величины (точка С ).

Вследствие того, что поведение (и происхождение) этих сил не зависят друг от друга, они уже не действуют вдоль одной линии, а образуют пару сил, параллельных и перпендикулярных действующей ватерлинии В 1 Л 1 . В отношении силы веса Р можно сказать, что она остается вертикальной и перпендикулярной поверхности воды, а накрененное судно отклоняется от вертикали, и лишь условность рисунка требует отклонять вектор силы веса от диаметральной плоскости. Специфику такого подхода легко себе уяснить, если представить ситуацию с закрепленной на судне видеокамерой, дающей на экране поверхность моря, наклоненную на угол, равный углу крена судна.



Полученная пара сил создаёт момент, который принято называть восстанавливающим моментом . Этот момент противодействует внешнему кренящему моменту и является главным объектом внимания в теории остойчивости.

Величина восстанавливающего момента может быть вычислена по формуле (как для любой пары сил) как произведение одной (любой из двух) силы на расстояние между ними, называемое плечом статической остойчивости :

Формула (1) указывает на то, что и плечо и сам момент зависят от угла крена судна, т.е. представляют собой переменные (в смысле крена) величины.

Однако, не при всех случаях направление восстанавливающего момента будет соответствовать изображению на Рис.1.

Если центр тяжести (в результате особенностей размещения грузов по высоте судна, например, при избытке груза на палубе) оказывается довольно высоко, то может возникнуть ситуация, когда сила веса окажется справа от линии действия силы поддержания. Тогда их момент будет действовать в противоположном направлении и будет способствовать накренению судна. Вместе с внешним кренящим моментом они будут опрокидывать судно, поскольку других противодействующих моментов больше нет.

Ясно, что в этом случае следует оценивать эту ситуацию как недопустимую, т. к. судно остойчивостью не обладает. Следовательно, при высоком положении центра тяжести судно может терять это важное мореходное качество – остойчивость.



На морских водоизмещающих судах возможность осуществлять воздействие на остойчивость судна, «управлять» ею, предоставляется судоводителю только путем рационального размещения грузов и запасов по высоте судна, определяющих положение центра тяжести судна. Как бы то ни было, влияние членов экипажа на положение центра величины исключено, поскольку оно связано с формой подводной части корпуса, которая (при постоянном водоизмещении и осадке судна) неизменна, а при наличии крена судна изменяется без участия человека и зависит только от осадки. Влияние человека на форму корпуса заканчивается на стадии проектирования судна.

Таким образом, очень важное для безопасности судна положение центра тяжести по высоте находится в «сфере влияния» экипажа и требует постоянного контроля посредством специальных вычислений.

Для расчетного контроля наличия у судна «положительной» остойчивости используется понятие метацентра и начальной метацентрической высоты.

Поперечный метацентр – это точка, являющаяся центром кривизны той траектории, по которой центр величины перемещается при накренении судна.

Следовательно, метацентр (так же как и центр величины) является специфической точкой, поведение которой исключительно определяется лишь геометрией формы судна в подводной части и его осадкой.

Положение метацентра, соответствующее посадке судна без крена, принято называтьначальным поперечным метацентром .

Расстояние между центром тяжести судна и начальным метацентром в конкретном варианте загрузки, измеренное в диаметральной плоскости (ДП), называется начальной поперечной метацентрической высотой .

На рисунке видно, что чем ниже располагается центр тяжести по отношению к постоянному (для данной осадки) начальному метацентру, то тем больше будет метацентрическая высота судна, т.е. тем больше оказывается плечо восстанавливающего момента и сам этот момент.

Зависимость плеча восстанавливающего момента от положения центра тяжести судна.

Таким образом, метацентрическая высота является важной характеристикой, служащей для контроля наличия у судна остойчивости. И чем больше её величина, тем больше при тех же углах крена будет величина восстанавливающего момента, т.е. противодействие судна накренению.

При малых накренениях судна метацентр приблизительно находится на месте начального метацентра, поскольку траектория центра величины (точки С ) близка к окружности, и её радиус постоянен. Из треугольника с вершиной в метацентре вытекает полезная формула, справедливая при малых углах крена (θ <10 0 ÷12 0):

где угол крена θ следует использовать в радианах.

Из выражений (1) и (2) легко получить выражение:

которое показывает, что плечо статической остойчивости и метацентрическая высота не зависят от веса судна и его водоизмещения, а представляют собой универсальные характеристики остойчивости, с помощью которых можно сравнивать остойчивость судов разных типов и размеров.

Плечо статической остойчивости

Так для судов с высоким положением центра тяжести (лесовозы) начальная метацентрическая высота принимает значения h 0 ≈ 0 – 0,30 м, для сухогрузных судов h 0 ≈ 0 – 1,20 м, для балкеров, ледоколов, буксиров h 0 > 1,5 ÷ 4,0 м.

Однако, метацентрическая высота отрицательных значений принимать не должна. Формула (1) позволяет сделать другие важные выводы: поскольку порядок величин восстанавливающего момента определяется в основном величиной водоизмещения судна Р , то плечо статической остойчивости является «управляющей величиной», влияющей на диапазон изменения момента М в при данном водоизмещении. И от малейших изменений l (θ) за счет неточностей его вычисления или погрешностей исходной информации (данные, снимаемые с судовых чертежей, либо замеряемые параметры на судне) существенно зависит величина момента М в , определяющего способность судна сопротивляться наклонениям, т.е. определяющего его остойчивость.

Таким образом, начальная метацентрическая высота играет роль универсальной характеристики остойчивости , позволяющей судить о её наличии и величине безотносительно от размеров судна.

Если проследить за механизмом остойчивости при больших углах крена, то проявятся новые особенности восстанавливающего момента.

При произвольных поперечных наклонениях судна кривизна траектории центра величины С изменяется. Эта траектория - уже не окружность с постоянным радиусом кривизны, а является некой плоской кривой, имеющей в каждой своей точке разные значения кривизны и радиуса кривизны. Как правило, этот радиус с креном судна увеличивается и поперечный метацентр (как начало этого радиуса) выходит из диаметральной плоскости и перемещается по своей траектории, отслеживая перемещения центра величины в подводной части судна. При этом, разумеется, само понятие метацентрической высоты становится неприменимым, и лишь восстанавливающий момент (и его плечо l (θ)) остаются единственными характеристиками остойчивости судна при больших наклонениях.

Однако, при этом начальная метацентрическая высота не теряет своей роли быть основополагающей исходной характеристикой остойчивости судна в целом, поскольку от её величины, как от некоего «коэффициента масштаба» зависит порядок величин восстанавливающего момента, т.е. её косвенное влияние на остойчивость судна на больших углах крена сохраняется.

Итак, для контроля остойчивости судна, осуществляемого перед загрузкой, необходимо на первом этапе оценить значение начальной поперечной метацентрической высоты h 0 , пользуясь выражением:

где z G и z M0 – аппликаты центра тяжести и начального поперечного метацентра, соответственно, отсчитываемые от основной плоскости, в которой располагается начало связанной с судном системы координат ОХYZ (Рис. 3).

Выражение (4) одновременно отражает степень участия судоводителя в обеспечении остойчивости. Выбирая и контролируя положение центра тяжести судна по высоте, экипаж обеспечивает остойчивость судна, а все геометрические характеристики, в частности, Z M0 , должны быть предоставлены проектантом в виде графиков от осадки d, называемых кривыми элементов теоретического чертежа .

Дальнейший контроль остойчивости судна производится по методике Морского Регистра судоходства (РС) или по методике Международной Морской Организации (ИМО).

Начальная поперечная метацентрическая высота

Диаграмма статической остойчивости

Плечо восстанавливающего момента l и сам момент М в имеют геометрическую интерпретацию в виде Диаграммы статической остойчивости (ДСО) (Рис.4). ДСО – этографическая зависимость плеча восстанавливающего момента l (θ) или самого момента М в (θ) от угла крена θ .

Этот график, как правило, изображают для крена судна только на правый борт, поскольку вся картина при крене на левый борт для симметричного судна отличается только знаком момента М в (θ).

Значение ДСО в теории остойчивости очень велико: это не только графическая зависимостьМ в (θ); ДСО содержит в себе исчерпывающую информацию о состоянии загрузки судна с точки зрения остойчивости. ДСО судна позволяет решать многие практические задачи в данном рейсе и является отчетным документом для возможности начать загрузку судна и отправку его в рейс.

В качестве свойств ДСО можно отметить следующие:

· ДСО конкретного судна зависит только от взаимного расположения центра тяжести судна G и начального поперечного метацентра m (или значением метацентрической высотой h 0 ) и водоизмещением Р (или осадкой d ср ) и учитывает наличие жидких грузов и запасов с помощью специальных поправок,

· форма корпуса конкретного судна проявляется в ДСО через плечо l (θ), жестко связанное с формой обводов корпуса, которое отражает смещение центра величины С в сторону входящего в воду борта при накренении судна,.

· метацентрическая высота h 0 , вычисленная с учетом влияния жидких грузов и запасов (см. ниже), проявляется на ДСО как тангенс угла наклона касательной к ДСО в точке θ = 0, т.е.:

Для подтверждения правильности построения ДСО на ней делают построение: откладывают угол θ = 1 рад (57,3 0) и строят треугольник с гипотенузой, касательной к ДСО при θ = 0, и горизонтальным катетом θ = 57,3 0 . Вертикальный (противолежащий) катет должен оказаться равным метацентрической высоте h 0 в масштабе оси l (м).

· никакие действия не могут изменить вида ДСО, кроме изменения величин исходных параметров h 0 и Р , поскольку ДСО отражает в каком-то смысле неизменную форму корпуса судна посредством величины l (θ);

· метацентрическая высота h 0 фактически определяет вид и протяженность ДСО.

Угол крена θ = θ 3 , при котором график ДСО пересекает ось абсцисс, называется углом заката ДСО. Угол заката θ 3 определяет только то значение угла крена, при котором сила веса и сила плавучести будут действовать вдоль одной прямой и l (θ 3) = 0. Судить об опрокидывании судна при крене

θ = θ 3 не будет верным, поскольку опрокидывание судна начинается гораздо раньше - вскоре после преодоления максимальной точки ДСО. Точка максимума ДСО (l = l m (θ m)) свидетельствует только о максимальном удалении силы веса от силы поддержания. Однако, максимальное плечо l m и угол максимума θ m являются важными величинами при контроле остойчивости и подлежат проверке на соответствие соответствующим нормативам.

ДСО позволяет решать многие задачи статики судна, например, определять статический угол крена судна при действии на него постоянного (независящего от крена судна) кренящего момента М кр = const. Этот угол крена может быть определен из условия равенства кренящего и восстанавливающего моментов М в (θ) = М кр . Практически эта задача решается как задача по нахождению абсциссы точки пересечения графиков обоих моментов.

Взаимодействие кренящего и восстанавливающего моментов

Диаграмма статической остойчивости отражает возможность судна создавать восстанавливающий момент при наклонении судна. Её вид имеет строго конкретный характер, соответствующий параметрам загрузки судна только в данном рейсе (Р = Р i ,h 0 =h 0i ). Судоводитель, занимающийся на судне вопросами планирования рейса погрузки и расчетами остойчивости, обязан построить конкретную ДСО для двух состояний судна в предстоящем рейсе: с неизменным первоначальным расположением груза и при 100 % и при 10 % судовых запасов.

Чтобы иметь возможность строить диаграммы статической остойчивости при различных сочетаниях водоизмещения и метацентрической высоты, он пользуется вспомогательными графическими материалами, имеющимися в судовой документации по проекту этого судна, например, пантокаренами, либо универсальной диаграммой статической остойчивости.

Пантокарены

Пантокарены поставляются на судно проектировщиком в составе информации об остойчивости и прочности для капитана. Пантокарены представляют собой универсальные графики для данного судна, отражающие форму его корпуса в части остойчивости.

Пантокарены (Рис. 6) изображены в виде серии графиков (при разных углах крена (θ = 10,20,30,….70˚)) в зависимости от веса судна (или его осадки) некоторой части плеча статической остойчивости, называемой плечом остойчивости формы – l ф (Р , θ ).

Пантокарены

Плечо формы - это расстояние, на которое переместится сила плавучести относительно исходного центра величины C ο при крене судна (Рис. 7). Понятно, что это смещение центра величины связано только с формой корпуса и не зависит от положения центра тяжести по высоте. Набор значений плеча формы при разных углах крена (при конкретном весе суднаР=Р i ) снимают с графиков пантокарен (Рис. 6).

Чтобы определить плечи остойчивости l (θ) и построить диаграмму статической остойчивости в предстоящем рейсе необходимо дополнить плечи формы – плечами веса l в , которые легко рассчитать:

Тогда ординаты будущей ДСО получаются по выражению:

Плечи остойчивости формы и веса

Выполнив вычисления для двух состояний нагрузки (Р зап. = 100% и 10%), строят на чистом бланке две ДСО, характеризующих остойчивость судна в этом рейсе. Остается выполнить проверку параметров остойчивости на их соответствие национальным или международным нормативам по остойчивости морских судов.

Существует второй способ построения ДСО, использующий универсальную ДСО данного судна (зависит от наличия на судне конкретных вспомогательных материалов).

Предположим, что судно из исходного положения без крена и дифферента совершает поперечные или продольные равнообъемные наклонения. При этом плоскостью продольных наклонений будет вертикальная плоскость, которая совпадает с ДП, а плоскость поперечных наклонений - вертикальная плоскость, которая совпадает с плоскостью шпангоута, проходящего через ЦВ.

Поперечные наклонения

В прямом положении судна ЦВ находится в ДП (точка С) и линия действия силы плавучести гV также лежит в ДП (рис. 2). При поперечном наклонении судна на угол И изменяется форма погруженного объема, ЦВ перемещается в сторону наклонения из точки С в точку С И и линия действия силы плавучести будет наклонена к ДП под углом И.

Точка пересечения линий действия силы плавучести при бесконечно малом поперечном равнообъемном наклонении судна называется поперечным метацентром (точка m на рис. 2). Радиус кривизны траектории ЦВ r (возвышение поперечного метацентра над ЦВ) называется поперечным метацентрическим радиусом.

В общем случае траектория ЦВ является сложной пространственной кривой и каждому углу наклонения соответствует свое положение метацентра (рис. 3). Однако для малых равнообъемных наклонений с известным приближением можно принять, что траектория

ЦВ лежит в плоскости наклонения и является дугой окружности с центром в точке m. Таким образом, можно считать, что в процессе малого поперечного равнообъемного наклонения судна из прямого положения поперечный метацентр лежит в ДП и своего положения не меняет (r = const).

Рис. 2.

Рис. 3. Перемещение ЦВ при больших наклонениях

Рис. 4.

Выражение для поперечного метацентрического радиуса r получим из условия, что ось малого поперечного равнообъемного наклонения судна лежит в ДП и что при таком наклонении клиновидный объем v как бы переносится с борта, вышедшего из воды, на борт, вошедший в воду (рис. 4).

Согласно известной теореме механики при перемещении тела, принадлежащей системе тел, центр тяжести всей системы перемешается в том же направлении параллельно перемещению тела, причем эти перемещения обратно пропорциональны силам тяжести тела и системы соответственно. Эту теорему можно распространить и на объемы однородных тел. Обозначим:

С С И - перемещение ЦВ (геометрического центра объема V),

b - перемещение геометрического центра клиновидного объема v. Тогда в соответствии с теоремой

откуда: С С И =

Для элемента длины судна dx, полагая, что клиновидный объем имеет в плоскости шпангоута форму треугольника, получим:

или при малом угле

Если by, тогда:

dv b = y 3 И dx.

Интегрируя, получим:

v b = И y 3 dx, или:

где J x = ydx - момент инерции площади ватерлинии относительно продольной центральной оси.

Тогда выражение для перемещения ЦВ будет иметь вид:

Как видно из рис. 5, при малом угле И

Сопоставляя выражения, найдем, что поперечный метацентрический радиус:

Аппликата поперечного метацентра.